METALLIC MATERIALS MANUAL
March 2004

DISCLAIMER
CICIND documents are presented to the best of the knowledge of its members as guides only. CICIND is not, nor are any of its members, to be held responsible for any failure alleged or proved to be due to adherence to recommendations, or acceptance of information, published by the association in a Model Code or other publication or in any other way.

Copyright CICIND 2003
ISBN 1-902998-16-2

Office of the Secretary:
Preussenstrasse 11
40883 Ratingen
Germany
email: secretary@cicind.org
www:cicind.org
Foreword
The Manual has been developed by the CICIND Metallic Materials Committee in order to meet a perceived need for ready reference to the properties and characteristics of metallic materials for use in all aspects of chimney design. Information is well documented but found in diverse locations. In order to facilitate access to information, material data sheets are included in Section 12. Where relevant, sources are referenced in the text, together with a bibliography for further reading. Material specifications are listed with full international designations where applicable, as well as national equivalents wherever possible.

Great care was exercised in reproducing the information provided in this Manual to minimise errors. However, it is inevitable that occasional slips may occur and the user is cautioned to exercise care and judgement to interpret the data correctly. Please notify CICIND immediately if you become aware of any errors or omissions so that they may be corrected promptly. Also, we would be pleased to hear of additional sources of information or of additional subjects that may be usefully included in future revisions to the Manual.

The assistance of the Metallic Materials Producers in providing data and directly supporting the work of the Committee and of the Committee members with the encouragement of the CICIND Governing Body is gratefully acknowledged. The Committee Chairman particularly wished to acknowledge the support of the Nickel Development Institute (NiDI) for whom he acted as a consultant.

The Committee comprised:
Chairman: W. Plant

In preparing this document, great reliance has been placed on published information from a number of sources. The organisations involved include CICIND member organisations, material producers and trade organisations. All such contributions are gratefully acknowledged.

Table of Contents
1. BACKGROUND
1.1 General
1.2 W.H.D. Plant
1.3 Acknowledgements
1.4 Layout of Manual
1.5 Units conversion
1.6 Commonly Used Chemical Elements
2. Introduction
2.1 Acid Dewpoint Corrosion
2.1.1 Dewpoint
2.2 Metallic Chimneys and Flues
2.2.1 Material Groups
2.2.2 Metallic Materials for Chimneys and Flues
3.1 Criteria
3.1.1 Temperature
3.1.2 Chemical Loadings
3.1.3 Corrosion Allowance
4. Metallic Materials Structural Applications
4.1 Structural Steels
4.2 Weathering Steels
4.3 Stainless Steels, Nickel Base Alloys and Titanium
4.3.1 Stainless Steels
4.3.2 Nickel Alloys and Titanium
4.4 Chemical effects
4.5 Allowance for Corrosion
5. Stainless Steels
5.1 Introduction
5.2 Guidelines for Selection
5.3 Basic Grades of Stainless Steels
5.3.1 Austenitic Stainless Steels
5.3.2 Ferritic Stainless Steels
5.3.3 Duplex Stainless Steels
5.4 Material Selection
5.5 Corrosion Resistance
5.6 High-Temperature Corrosion Resistance
5.7 High Performance Grades
5.7.1 Austenitic High Performance Stainless Steels
5.7.2 Duplex High Performance Stainless Steels
5.7.3 Mechanical Properties
5.7.3.1 Austenitic Stainless Steels.
5.7.3.2 Duplex Stainless Steels.
5.7.4 Physical Properties
5.7.5 Corrosion Resistance of High Performance Stainless Steels in Flue Gas Environments.
5.7.5.1 Resistance to Inorganic Acids.
5.7.5.2 Sulphurous Acid.
5.7.5.3 Chloride - and Other Halide Ion-Containing Aqueous Environments.
5.7.5.4 Ranking of Individual Grades
5.7.5.5 Acidic Environments Containing Halides - Flue Gas Condensates.
5.8 Corrosion Acceptance Tests
5.9 Potential substitution of super-austenitic stainless steel for nickel base alloys

6. Nickel Alloys
6.1 Effects of Alloying in Stainless Steels and Nickel Alloys
6.2 Selection and Performance of Materials

7. Titanium
7.1 Titanium Linings
7.2 Definition of the Operating Environment
7.3 Resistance of Titanium to hot concentrated reducing acids
7.4 Resistance of Titanium to fluoride species
7.5 Selection
7.6 Design Stresses
7.7 Physical Properties
7.8 Product Form
7.9 Installation
7.10 References

8. Elevated Temperature Properties
8.1 Introduction
8.2 Elevated Temperature Properties
8.3 High Temperature Design Factors
8.3.1 Service Life
8.3.2 Allowable Deformation
8.3.3 Environment
8.3.4 Cost
8.4 Criteria for Selection
8.4.1 Short-Time Tensile Properties
8.4.2 Creep
8.4.3 Creep-Rupture
8.4.4 Thermal Stability
8.4.5 Physical Properties
8.4.6 Modulus of Elasticity
8.4.7 Effect of Atmosphere
8.4.8 Low Temperature Properties

9. Low Temperature Properties
9.1 Introduction
9.2 Low temperature service
9.3 Structural Steels
9.4 Stainless Steels
9.5 High Nickel Alloys

10. Useful Information
10.1 Material Data Sheets

List of Tables

Table 1-1 General conversion of units
Table 1-2 Commonly Used Elements
Table 3-1 Corrosion allowance for sheet steel thickness for general structural steels and for creep-resistant steels
Table 3-2 Addition to sheet steel thickness when using rust-resistant steels subject to aggressive condensates
Table 3-3 Steel yield strength values (fy,k) at temperature from prEN13084-7:2001
Table 4-1 Limits of exposure to acidic condensation
Table 4-2 External corrosion allowance (CE)
Table 4-3 Internal corrosion allowance (CI)
Table 4-4 Minimum strengths inN/mm²
Table 4-5 Impact values for nominal thickness 10-150mm
Table 4-6 Indication of maximum temperatures commonly used for structural steels
Table 4-7 Suggested maximum service temperatures in air for stainless steels
Table 4-8 Corrosion resistance of carbon steel and A242 Type 1 HSLA steel in natural gas combustion products
Table 5-1 Austenitic Stainless Steels
Table 5-2 Guideline to relative corrosion resistance of basic stainless steels
Table 5-3 Type 316 S31600 Steel Properties
Table 5-4 Type 316 S31600 Steel Properties
Table 5-5 Type 317 Stainless Steel (S31700) Properties
Table 5-6 Type 410 Stainless Steel (S41000) Properties
Table 5-7 Type 410 Stainless Steel (S41000) Properties
Table 5-8 Modulus of elasticity at various temperatures
Table 5-9 Modulus of rigidity at various temperatures
Table 5-10 Poisson’s Ratio at various temperatures
Table 5-11 Suitability of linings for steel stacks to withstand chemical and temperature environments of flue gas
Table 5-12 Chemical Composition1 of wrought high-performance austenitic stainless steels (wt. pct)2
Table 5-13 Chemical Composition1 of wrought high-performance duplex stainless steels (wt. pct)2
Table 5-14 Minimum mechanical properties for basic ASTM spec high performance austenitic stainless steels
Table 5-15 High performance austenitic stainless steels ASME allowable design stress values (ksi)
Table 5-16 Minimum mechanical properties for basic ASTM spec high performance duplex stainless steels
Table 5-17 High performance duplex stainless steels ASME allowable design stress values (ksi)
Table 5-18 Ambient temperature physical properties of high performance austenitic stainless steels
Table 5-19 Ambient temperature physical properties of high performance duplex stainless steels
Table 6-1 Selection of nickel alloys in ascending order of PRENW
Table 6-2 PRENW values for increasing alloy content
Table 6-3 Limiting chemical composition for C276
Table 6-4 Physical properties of C276 at high temperatures
Table 6-5 Physical properties for C276
Table 6-6 Typical room temperature tensile properties of annealed C276 material
Table 6-7 Guidelines for the selection of stainless steel and nickel alloy for FGD equipment
Table 6-8 Guidelines for material selection for FGD equipment - Temperature 50-65°C*
Table 6-1 Composition of commonly used titanium alloys
Table 6-2 Suitability of titanium alloys for different operating conditions
Table 6-3 Titanium Alloy Design Stresses
Table 6-4 Titanium Alloy Physical Properties
Table 8-1 Steel yield strength values (fy,k) at temperature from prEN13084-7:2001
Table 8-2 Short term tensile properties
Table 8-3 Suggested maximum service temperatures in air
Table 8-4 Physical properties of Type 309 (S30900)
Table 8-5 Physical properties of Type 309 (S30900)
Table 8-6 Physical properties of Type 310 (S31000)
Table 8-7 Physical properties of Type 310
Table 8-8 Elevated temperature physical properties of high-performance austenitic stainless steels
Table 8-9 Elevated temperature physical properties of high-performance duplex stainless steels
Table 9-1 Titanium Alloy Design Stresses

List of Figures

Figure 4-4 Comparison of corrosion rates under exposure to fuel-oil combustion-product gas
Figure 5-1 Operating zones in a generic FGD system as defined in ASTM STP 837
Figure 5-2 Commonly used grades of stainless steel
Figure 5-3 Corrosion rates for stainless steels in various gases
Figure 5-4 Solid solution strengthening effects by alloying in austenitic stainless steels
Figure 5-5 Effect of nitrogen on the strength and ductility of Type 304 stainless steel
Figure 5-6 Strengthening effect of nitrogen in high performance austenitic stainless steels
Figure 5-7 High temperature strength of austenitic stainless steels
Figure 5-8 High temperature strength of duplex high performance stainless steels
Figure 5-9 Young's Modulus for a selection of standard and high performance stainless steels
Figure 5-10 Thermal conductivity of high performance stainless steel structure types
Figure 5-11 Mean coefficient of thermal expansivity for high performance stainless steel types
Figure 5-12 Corrosion in non-aerated sulphuric acid-chloride solutions
Figure 5-13 Critical crevice and pitting corrosion temperatures for stainless steels and nickel alloy
Figure 5-14 Critical pitting and crevice corrosion temperatures for austenitic stainless steel related to PRE number
Figure 5-15 Effect of pH and Cl ions on the localised attack of Type 316L stainless steel
Figure 5-16 Effect of pH and Cl ions on the localised attack of Type 317L stainless steel
Figure 5-17 Approximate service limits for stainless steels and nickel-base alloys
Figure 6-1 H2SO4 concentration for various temperatures and operating conditions in FGD plant
Figure 6-2 Tensile properties of annealed plate C276
Figure 8-1 Schematic tensile rupture strength in 1000 hours
Figure 8-2 Schematic Creep Curve
Figure 8-3 Short time tensile strengths
Figure 8-4 Stress-rupture curves for several annealed stainless steels - 10,000hrs
Figure 8-5 Stress rupture curves for several stainless steels - 100,000hrs
Figure 8-6 Creep-rate curves for several stainless steels - 1% in 10,000hrs
Figure 8-7 Creep-rate curves for several stainless steels - 1% in 100,000hrs
Figure 8-8 Stress vs rupture-time and creep-rate curves for annealed Type 304 stainless steel
Figure 8-9 Stress vs rupture time and creep-rate curves for annealed Type 309 stainless steel
Figure 8-10 Stress vs rupture time and creep-rate curves for annealed Type 310 stainless steel
Figure 8-11 Stress vs rupture time and creep-rate curves for annealed Type 316 stainless steel
Figure 8-12 Stress vs rupture time and creep-rate curves for annealed Type 321 stainless steel
Figure 8-13 Stress vs rupture time and creep-rate curves for annealed Type 347 stainless steel
Figure 8-14 Stress vs rupture time and creep-rate curves for annealed Type 410 stainless steel
Figure 8-15 Linear thermal expansion of stainless steels
Figure 8-16 Thermal conductivity of stainless steels
Figure 8-17 Tensile modulus for ferritic steels (alloy and stainless)
Figure 8-18 Tensile modulus for austenitic stainless steels
Figure 8-19 Scaling behaviour of various steels during 1000-hr exposures in air
Figure 8-20 Corrosion rates for stainless steel in various gases
Figure 8-21 Effect of nickel on scaling resistance
Figure 9-1 Variation of Charpy Impact value on Nickel bearing steels with temperature
Figure 9-2 Variation in tensile properties of Type 316 stainless steel with temperature
Figure 9-3 Variation in strength and ductility of INCONEL alloy 625